

MIGRATING
SOLIDWORKS

APPLICATIONS TO
AUTODESK INVENTOR.

HINTS, TIPS AND RECOMMENDATIONS

Whitepaper Developed by SUNGRACE. For
more information, please visit:

www.sungraceinc.com/autodesklanding

http://www.sungraceinc.com/autodesklanding

 ii

Contents

Contents... ii

Introduction .. 1

Who is this guide aimed at? ... 1

How this guide helps you. ... 1

COM APIs .. 2

Application Integration Types ... 3

How Do You Decide? .. 3

Finding Your Way Around the Inventor API ... 4

You Cannot Record Command Sequences But Master the Macros Anyway! 4

Use a Different Ruler ... 4

Simple VBA Macros ... 4

Displaying Active Document Name in SolidWorks ... 5

This is How It Will Look in Inventor ... 6

The Application and Document Are Right At Hand .. 6

Exploring SolidWorks and Inventor Object Models .. 7

Charting the Objects .. 7

Finding the Objects That You Need .. 8

Getting the Right Bucket ... 10

What Do You Need to Find? .. 10

It's Arranged A Little Differently ... 13

Collection Objects .. 14

Definition Objects ... 15

Getting Things Done .. 16

Accessing the Application Object .. 16

Creating and Accessing Documents ... 16

Traversing Features ... 17

Accessing User Selections ... 21

Assemblies -- New Terminology to Learn .. 24

 iii

Proxy Objects .. 25

Working with Drawings .. 26

Creating Drawing Sheets .. 27

Placing Model Views On A Sheet .. 27

Retrieving Dimensions From the Base Model ... 27

New Drawing Document Concept: Geometry Intent 28

Customizing the User Interface .. 30

Start With a Wizard .. 30

Mapping the User Interface .. 31

Comparing Customizable UI Elements ... 32

Menus and Toolbars .. 32

FeatureManager ... 32

PropertyManager .. 32

Model Views .. 33

Pop-up Menus... 33

Status Bar .. 33

Mapping the User Interface API Objects .. 33

Advanced Topics .. 35

The B-Rep API .. 35

Comparing the B-Rep Models .. 35

Accessing Topology Objects .. 36

Evaluating Geometry ... 37

Persistent References ... 38

Custom Attributes ... 39

Events and Notifications .. 39

Start with Add-In Template Code .. 40

Look for AddHandler Calls .. 40

Add Your Code to the Notification Functions ... 40

Graphics... 42

Use Native Primitives... 42

 iv

Graphics for Real-time Interaction ... 43

Mouse and Keyboard Inputs .. 43

Redo Undo Objects .. 46

Summary ... 48

Figure 1: Inventor's VBA Editor ... 5
Figure 2: Inventor 2011 API Object Model .. 8
Figure 3: The Object Browser... 9
Figure 4: The VBA Debugger... 10
Figure 5: Feature Trees in SolidWorks & Inventor .. 18
Figure 6: Comparing the User Interfaces .. 31
Figure 7: ClientGraphics Primitives ... 43
Figure 8: MouseEvents Example .. 45

Table 1: Application Types ... 3
Table 2: Mapping High-Level Objects ... 11
Table 3: Feature Tree Traversal .. 19
Table 4: Feature Traversal Output .. 20
Table 5: Onscreen Selection & Query Code ... 21
Table 6: Assembly Objects ... 25
Table 7: Assembly APIs ... 26
Table 8: Topology and Geometry Objects .. 36
Table 9: Mouse Event Handlers in SolidWorks and Inventor .. 45
Table 10: Redo Undo Objects ... 46

 1

Introduction

Who is this guide aimed at?

This guide is aimed at software developers who are already integrating their
applications with SolidWorks, and who are considering (or actively) migrating
their applications to work with Autodesk Inventor. The guide assumes you have a
good working knowledge of the SolidWorks API, software development practices,
COM and relevant programming languages.

How this guide helps you.

This guide provides you with a comparative overview of the core SolidWorks and
Inventor APIs -- their similarities and differences, and how the key objects and
constructs in SolidWorks can be emulated via the Inventor API.

This guide loosely follows the ten core topics of the Introductory Inventor API
virtual training class, which can be downloaded here.

Although this guide touches upon various programming topics and debugging
tools that are available to help understand the Inventor API, the intention isn’t to
describe in minute detail every aspect of the API. There are recommended
learning resources available as a part of the Inventor product documentation and
online. The following site is a good the next step for learning about the Inventor
API in more detail: www.autodesk.com/developinventor.

http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.autodesk.com%2Fdevelopinventor
http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.autodesk.com%2Fdevelopinventor
http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.autodesk.com%2Fdevelopinventor

 2

COM APIs

Both SolidWorks and Inventor API's are based on Microsoft’s Component Object
Model (COM) technology. The products and respective APIs also perform very
similar functions, which makes migrating from SolidWorks to Inventor a
surprisingly straightforward task. You can start programming in Inventor using
exactly the same COM-compliant languages and tools that you will have been
using to work with the SolidWorks API.

In principle you can use any COM compliant programming language to access
the Inventor API, including Microsoft .NET languages (VB and C#), and Visual
C++. Autodesk Inventor also currently includes Microsoft’s VBA IDE, which is the
same technology framework that is used for writing macros and other VBA-
enabled applications in SolidWorks.

A note about VBA - although the IDE is still available in Inventor 2011, Autodesk
has announced that VBA will be removed from Inventor at some point in the
future. So you are encouraged to learn how to use the Inventor 'add-in'
infrastructure and use that as your primary method for future Inventor application
development. If you have already worked with some Inventor VBA code, here's
an excellent white paper on how that could be migrated to an Add-In application:
http://modthemachine.typepad.com/files/vbatoaddins.pdf.

For simplicity, this guide uses VBA notation for code examples. Any type of
application -- whether a macro, add-in, or EXE -- will use the same underlying
object model, and VBA still provides the most concise way to illustrate the
architectural aspects of the Inventor and SolidWorks APIs.

Elaborate error checking steps in the various bits of sample code are omitted in
the interest of brevity. It is the responsibility of the programmer to ensure good
error handling practice is adhered to, to help your production code be as robust
as possible.

http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2Fvbatoaddins.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2Fvbatoaddins.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2Fvbatoaddins.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2Fvbatoaddins.pdf

 3

Application Integration Types

The table below summarizes the different types of applications supported by
SolidWorks, and outlines the equivalent Inventor related application types.

Table 1: Application Types

Application Purpose SolidWorks Application
Type

In Inventor, Use…

To learn to program;
inspect code and objects;
create simple forms

VBA macros VBA macros

Drive model generation
from Microsoft Excel,
Access, Visio etc.

VBA-enabled
applications

VBA-enabled
applications

External application that
needs to access the API

Standalone EXEs Standalone EXEs, Add-in
EXEs, Apprentice

Custom embedded
applications

Add-in DLLs Add-in DLLs or EXEs

How Do You Decide?

Here's some additional information to keep in mind about the suitability of
different types of applications in Inventor:

• Standalone EXEs can be developed where you have a program that uses
Inventor but has its own interface and doesn't require the user to
interactively work with Inventor. For example, a batch plot utility would
typically be developed as a standalone EXE.

• An Add-In application is able to modify the user interface and integrates
tightly within the Inventor environment. In Inventor, there is the choice of
creating the add-in as a DLL, which will run in the same process as
Autodesk Inventor, or an EXE, which will run in a separate process.

 4

Almost all Add-Ins will be written as DLLs for increased performance
benefits.

• Autodesk also provides a subset of the Inventor API via a dll library called
'Apprentice server'. If you need read-only access to Autodesk Inventor
data such as the assembly structure, B-Rep, geometry, and file properties,
you can develop an Apprentice based application. This is an ActiveX
server that can be used within other applications and essentially provides
read-only access to Inventor Documents.

Finding Your Way Around the Inventor API

Now that programming languages and target application-types have been
discussed, let's take a closer look at some useful tools and some important areas
for consideration when developing in the Inventor environment.

You Cannot Record Command Sequences But Master the Macros Anyway!

One big difference between Inventor and SolidWorks is that Inventor doesn’t
support recording command sequences in a macro. However, macros are still the
easiest mechanism to get started with the Inventor API. Follow this link for a
concise overview detailing steps to edit and run Inventor VBA macros.

Use a Different Ruler

All Inventor documents use the internal units of: Centimeters, Radians, Seconds,
and Kilograms. Please keep this in mind as you migrate your code, as all
SolidWorks APIs use meters for length by default, and metric units in general.

Simple VBA Macros

To study the differences between SolidWorks and Inventor macros, let's look at
some very simple code from the Inventor VBA documentation.

http://docs.autodesk.com/INVPRO/2010/ENU/Autodesk%20Inventor%202010%20Help/index.html?url=WS1a9193826455f5ff5f7e8f111d485187134b3-procedure3.htm,topicNumber=d0e58956

 5

This simple subroutine will display a message box with the name of the active
document. Although trivially simple, this example eases you into Inventor's VBA
environment. A few differences between SolidWorks and Inventor will be
identified along the way. Refer to this guide for a detailed look at how to get
started with programming in Inventor’s VBA environment, but following is a quick
overview:

1. Access VBA using the Macro | Visual Basic Editor command in the Tools
menu, or by pressing Alt-F11;

2. A code module is automatically created named “Module1”. Double-click on
the module in the Project Explorer window, as shown in Figure 1. This will
cause the code window for that module to be displayed.
Figure 1: Inventor's VBA Editor

3. Copy and paste the Inventor code snippet below in the editor window, after

the Option Explicit line shown in the figure.

Displaying Active Document Name in SolidWorks

Here's how the sub would look in SolidWorks:

Public Sub DocDisplayName ()

http://www.autodesk.com/us/community/mfg/Part_1.pdf

 6

Dim swApp As SldWorks.SldWorks

Dim swDoc As SldWorks.ModelDoc2

Dim sDocDisplayName As String

Set swDoc = swApp.ActiveDoc

sDocDisplayName = swDoc.GetTitle

MsgBox (sDocDisplayName)

End Sub

This is How It Will Look in Inventor

Public Sub DocDisplayName ()

Dim oDoc As Inventor.Document

Dim sDocDisplayName As String

Set oDoc = ThisApplication.ActiveDocument

sDocDisplayName = oDoc.DisplayName

MsgBox (sDocDisplayName)

End Sub

The Application and Document Are Right At Hand

Note the "ThisApplication" global variable in the Inventor example that provides
direct access to the Inventor application object. Similarly, the "ThisDocument"
variable provides direct access to the Inventor document. However, it's not
available for all macros, only for projects contained within an Inventor Document.

Inventor's VBA supports three types of projects: document, application, and user,
which are different in terms of the location in which the project is stored.
Document projects are stored within Autodesk Inventor documents. Application
and user projects are stored in external files.

 7

The document project exposes the "ThisDocument" object representing the
document that contains the macro. Writing code within the ThisDocument module
gives you direct access to the Inventor document.

Exploring SolidWorks and Inventor
Object Models

Charting the Objects

The APIs for both SolidWorks and Inventor are essentially a set of "hooks",
called as interfaces, into the underlying capability of the software. The terms
interfaces and objects are often used interchangeably in API documentation, and
the Object Model provides a representation of the various objects, their
properties, and functions that are exposed to the outside world.

The various SolidWorks objects are documented primarily through API training
material and the API product documentation. Similar resources are also available
for Inventor and additionally, there is an Inventor 2011 Object Model diagram
available here in PDF form. This can be printed as a wall poster and serves as
an excellent at-glance reference to the Inventor API. Figure 2 shows an image of
this poster.

http://www.google.com/url?sa=D&q=http%3A%2F%2Fimages.autodesk.com%2Fadsk%2Ffiles%2Finventor2011model.pdf

 8

Figure 2: Inventor 2011 API Object Model

Finding the Objects That You Need

There are two very helpful tools that you can use in the VBA Editor as you get
acquainted with the Inventor object model. Use the Object Browser (Figure 3) to
review the contents of the Inventor type library.

 9

Figure 3: The Object Browser

Access it by clicking on the toolbar button or by selecting the Object Browser
command from the View menu.

You can also obtain a “live” view of the object model as you are debugging your
code by using the VBA Debugger (Figure 4). Use it to see the values of object
properties and contents of collections, for example.

 10

Figure 4: The VBA Debugger

Getting the Right Bucket

In SolidWorks, the core API functionality is contained within the
SolidWorks.Interop.sldworks namespace. Add a reference to the type library
using the "References…" command in VBA or VB. In Visual C++ you would use
the #import statement.

Besides the main type library, you would reference one or more additional type
libraries in SolidWorks for constants, add-ins, and utilities. In Inventor,
referencing the namespace Autodesk.Inventor.Interop provides access to all of
the objects that make up the Autodesk Inventor API.

What Do You Need to Find?

The following table provides an overview of some of the key SolidWorks objects
or object groups categorized by their functional area, and their Inventor
equivalents.

 11

Table 2: Mapping High-Level Objects

SolidWorks Object/
Object Group

Inventor Object/ Object Group

Application Interfaces

SldWorks Inventor

ModelDoc2 Document

PartDoc PartDocument

AssemblyDoc AssemblyDocument

DrawingDoc DrawingDocument

Model Interfaces

Attribute Attribute

Body2 SurfaceBody

Face2 Face

Loop2 EdgeLoop

CoEdge EdgeUse

Edge Edge

Vertex Vertex

Dimension FeatureDimension,
SketchDimensions

Modeler TransientGeometry

Assembly Interfaces

Component2 ComponentOccurrence

Interference InterferenceResult

Mate2 AssemblyConstraint

Drawing Interfaces

Layer Layer

Sheet Sheet

 12

HoleTable HoleTable

RevisionTableFeature RevisionTable

TitleBlock TitleBlock

View DrawingView

Feature Interfaces

Feature PartFeature

Fillets FilletFeatures

Holes HoleFeatures

Mold Tools CoreCavityFeature

Patterns PartFeatures

Reference Geometry Work Features

Sheet Metal SheetMetalFeatures

Surface PartFeatures

Weldments Welds

Configuration Interfaces

Configuration iPartFactory, iAssemblyFactory

DesignTable iPartTable*, iAssemblyTable*

Sketch Interfaces

Sketch PlanarSketch, Sketch3D

Annotation Interfaces

CenterLine Centerline

CenterMark Centermark

Note DrawingNote

BomTableAnnotation PartsList,
AssemblyComponentDefinition::BOM

 13

It's Arranged A Little Differently

Glancing at the object model diagram, there are quite a few singular and plural
forms of the same object name -- Document and Documents, Parameter and
Parameters, etc. There are also a lot of "Definition" objects, or object names of

Enumeration Interfaces

EnumBodies2 SurfaceBodies

EnumComponents2 ComponentOccurrences

EnumDocuments2 Documents

EnumModelViews2 Document::Views, DrawingViews

Utility Interfaces

CustomPropertyManager PropertySets

EquationMgr Parameters

MassProperty MassProperties

MathUtility TransientGeometry

SelectionMgr SelectSet

User-interface Interfaces

CommandManager CommandManager, CommandBar,
RibbonTab

FeatMgrView BrowserPane

Frame Views/ UserInterfaceManager
methods?

ModelViewManager Document, Views

PropertyManager BrowserPane and/or Dockable
Dialogs

Custom Interfaces

SwAddin ApplicationAddInServer

 14

the form "xxDefinition". For example, PartComponentDefinition, FilletDefinition,
iMateDefintion, and so on. These are explained in a bit more detail below.

Collection Objects

In SolidWorks, collections are mainly used when working with the B-Rep; i.e.
when building lists of specific faces, edges, and so on.

In the Inventor API however, most of the key objects have top-level collection
objects. For example: Documents is the base collection that contains all open
documents in the current session; the PartFeatures collection contains all the
PartFeatures defined in a part, and so on.

A collection is a special type of object that provides iteration over existing
objects. Collections, at a minimum, support the Count and Item properties which
provide access to the number of objects within the collection and return specific
objects from the collection respectively. They also support methods that allow
you to create new objects.

Here's an example of how the collection object for extruded features makes it
easy to get their count and names in Inventor:

Dim i As Long

For i = 1 To oExtrudeFeatures.Count

Debug.Print(oExtrudeFeatures.Item(i).Name)

Next

In SolidWorks, you would traverse the feature tree using the FirstFeature and
GetNextFeature methods as we'll see in a later section, identify extruded features
using the GetTypeName2 string, and increment a counter within the loop to
accomplish the same.

 15

One important thing to note with collections in the Inventor API is that the index
always begins with '1' and not '0' for all collections.

Definition Objects

Definition objects are used in Inventor if you need to modify an object, and not
just change its settings or visibility. For example, you will need to go through the
PartComponentDefinition object if you need to change the BRep or geometric
feature constraints for a part.

So for example, to add a sketch in SolidWorks, you would directly access the
sketch object on the part document as follows:

Dim sketchManager As SldWorks.sketchManager

Set sketchManager = partDocument.sketchManager

sketchManager.InsertSketch True

In Inventor, you would need to go through the definition object for the part as
follows:

Dim oCompDef As PartComponentDefinition

oCompDef = _InvApplication.ActiveDocument.ComponentDefinition

Dim oSketch As PlanarSketch

oSketch = oCompDef.Sketches.Add(oCompDef.WorkPlanes.Item(3))

Note that in some cases definition objects are abstract forms, from which you
create instances. For example, TitleBlockDefinition is used to create TitleBlocks.
Others like PartComponentDefinition and AssemblyComponentDefinition are
concrete objects, associated with Part and Assembly geometry respectively in
this case.

 16

Getting Things Done

Now that we have a handy reference to the Inventor object model and a
preliminary correlation with some of the key SolidWorks objects, let's take a
closer look at some commonly used objects and tasks.

Accessing the Application Object

As we have seen in an earlier section, you can access the top-level Inventor
application object from Inventor's VBA using the ThisApplication property.
Additionally, you can access it from an add-in, which we'll cover a little later, and
also from outside Inventor using GetObject or CreateObject methods.

Here's a very detailed explanation of various means available to you to connect
with Inventor and to get access to the Application object.

Creating and Accessing Documents

Here's a side-by-side example of how you would open an existing document or a
new one based on the default templates using Inventor API as compared to
SolidWorks.

SolidWorks Code Inventor Code

'Opens an existing document
Public Sub OpenDoc()

Dim swApp As SldWorks.SldWorks
Set swApp = Application.SldWorks
Dim fileerror As Long
Dim filewarning As Long

swApp.OpenDoc6
"C:\Temp\Part1.sldprt",
swDocPART,
swOpenDocOptions_Silent, "",
fileerror, filewarning

End Sub

Public Sub OpenDoc()

Dim oDoc As Document
oDoc =
_InvApplication.Documents.Open("
C:\Temp\Part1.ipt")

End Sub

'Creates a new document using the default template

http://modthemachine.typepad.com/my_weblog/2008/09/in-the-last-posting-i-discussed-the-object-model-and-that-it-provides-a-structured-way-to-access-the-various-objects-that-mak.html

 17

Public Sub CreateDoc()

Dim swApp As SldWorks.SldWorks
Set swApp = Application.SldWorks

'Get the default template file
name with path for Part document
Dim templateFileName As String
templateFileName =
swApp.GetDocumentTemplate(swDocu
mentTypes_e.swDocPART, "", 0, 0,
0)

'Create a new SolidWorks part
document with the default part
template
Dim partDocument As
SldWorks.ModelDoc2
Set partDocument =
swApp.NewDocument(templateFileNa
me, 0, 0, 0)

End Sub

Public Sub CreateDoc()

'Get the default template file
name with path for Part document
Dim templateFileName As String
templateFileName =
_InvApplication.FileManager.GetT
emplateFile(DocumentTypeEnum.kPa
rtDocumentObject)

'Create a new Inventor part
document with the default part
template
Dim oDoc As PartDocument
oDoc =
_InvApplication.Documents.Add(Do
cumentTypeEnum.kPartDocumentObje
ct, templateFileName, True)

End Sub

Here are the main objects that we used in this example:

• SolidWorks: SldWorks, ModelDoc2
• Inventor: Inventor, Documents, FileManager.

Traversing Features

We have seen a code snippet above of how the PartComponentDefinition object
would need to be accessed first in order to insert a sketch in Inventor. Creating a
sketch is typically the first step of creating a part feature.

The PlanarSketch and Sketch3D API's in Inventor are very similar to the
equivalent SolidWorks Sketch API, so let's focus on traversing existing features
instead. This is typically a very frequent operation in SolidWorks, so it’s important
to understand how to traverse the features in Inventor.

 18

Figure 5 shows the features of the tutor1f.sldprt part file in SolidWorks and
nozzle.ipt part in Inventor. Both of these files are installed as standard samples
with your installations.

Figure 5: Feature Trees in SolidWorks & Inventor

The collection objects in Inventor greatly simplify traversing features - we simply
use the Features or PartFeatures collection. The code, as you can see below, is
fairly straightforward:

Private Sub FeatureTraversal()

Dim Doc As PartDocument

Set Doc = ThisApplication.ActiveDocument

Dim oFeature As PartFeature

For Each oFeature In Doc.ComponentDefinition.Features

Debug.Print oFeature.Name

Next

End Sub

http://www.google.com/url?sa=D&q=http%3A%2F%2FoFeature.Name
http://www.google.com/url?sa=D&q=http%3A%2F%2FoFeature.Name

 19

This macro produces the following output, and can be compared with the model
tree shown in the figure:

Revolution1

Extrusion1

Extrusion2

Chamfer1

Hole1

Accessing Inventor Part features is typically accomplished using this technique,
however if you were looking to do something equivalent of traversing the
SolidWorks FeatureManager Design Tree in Inventor, then you would use
methods on the Model BrowserPane, which is similar to the FeatureManager
user interface in SolidWorks.

The main objects that we would use for the model tree traversal are as follows:

• SolidWorks: SldWorks, ModelDoc2, Feature
• Inventor: Inventor, Document, BrowserPanes, BrowserNode,

BrowserNodeDefinition.

Here is a side by side look at the above objects in action:

Table 3: Feature Tree Traversal
SolidWorks Inventor

Sub main()

'First, obtain the Document object.

Dim swApp As SldWorks.SldWorks

Dim swModel As SldWorks.ModelDoc2

 Set swApp = Application.SldWorks

 If Not swApp Is Nothing Then

 Set swModel = swApp.ActiveDoc

 End If

'Now obtain the first feature in the

Private Sub QueryModelTree()

'First, obtain the Document
object.
 Dim Doc As Document

 If
(ThisApplication.Documents.Count
<> 0) Then
 Set Doc =
ThisApplication.ActiveDocument
 End If

 20

FeatureManager design tree

 Dim swFeature As SldWorks.Feature

 Set swFeature = swModel.FirstFeature

'Print the feature name if the feature is
visible

'and move on to the next feature, if any

 While Not swFeature Is Nothing

 If Not
swFeature.GetUIState(swIsHiddenInFeatureMgr)
Then

 Debug.Print swFeature.Name

 Set swFeature =
swFeature.GetNextFeature

 End If

 Wend

End Sub

'Now obtain the top node for the
browser pane of the model tab.
 Dim oTopNode As BrowserNode
 Set oTopNode =
Doc.BrowserPanes("Model").TopNode

'Call the routine named
"recurse", which prints
'the node definition label and
moves on to the next 'node, if
any.
 Call recurse(oTopNode)

End Sub

'This routine calls itself for
each node in the collection of
browser nodes,
'printing the node definition
label of each node.

Sub recurse(node As BrowserNode)
 If (node.Visible = True) Then
 Debug.Print
node.BrowserNodeDefinition.Label
 Dim bn As BrowserNode
 For Each bn In
node.BrowserNodes
 Call recurse(bn)
 Next
 End If
End Sub

Here is what the output looks like in the VBA Immediate window:

Table 4: Feature Traversal Output
Comments
Sensors
Design Binder
Annotations
Surface Bodies
Solid Bodies
Lights, Cameras and Scene
Equations
Material <not specified>
Front Plane
Top Plane
Right Plane
Origin
Sketch2

nozzle.ipt
Solid Bodies(1)
Solid1
Revolution1
Sketch1
Extrusion1
Sketch1
Extrusion2
Sketch1
Chamfer1
Hole1
Sketch2
Origin
YZ Plane

 21

Boss-Extrude1
Sketch4
Boss-Extrude2
Sketch6
Cut-Extrude1
Fillet1
Fillet2
Fillet3
Shell1

XZ Plane
XY Plane
Center Point
Sketch1
Revolution1
Sketch1
Extrusion1
Sketch1
Extrusion2
Sketch1
Chamfer1
Hole1
Sketch2
End of Part

As you can see, this has generated a listing of all the nodes in the model tree.

Accessing User Selections

User selections are typically made via the graphics area, model view or the client
area (or whatever you like to call the model display area). The following section
illustrates how items and objects in a model that can be selected via the screen
are accessed through the API.

The example below compares how a single face, picked by the user on screen, is
accessed programmatically, and its surface area calculated. Models used in the
previous example are re-used here.

The respective objects used are:-

• SolidWorks: SldWorks, ModelDoc2, SelectionManager, Face2
• Inventor: Inventor, Document, SelectSet, and Face.

Note that both the Inventor SelectSet object and the SolidWorks
SelectionManager have their first index as 1, not zero. Also, knowing what the
internal default API units are, can you tell what units the area values will be in for
each program?

Table 5: Onscreen Selection & Query Code
SolidWorks Code Inventor Code

Sub main() Public Sub ShowSurfaceArea()

 22

SolidWorks Code Inventor Code

 Dim swApp As SldWorks.SldWorks
 Dim swModel As SldWorks.ModelDoc2
 Dim swSelMgr As
SldWorks.SelectionMgr

' Set a reference to the
SelectionManager object of the active
document.
 Set swApp = Application.SldWorks
 Set swModel = swApp.ActiveDoc
 Set swSelMgr =
swModel.SelectionManager

' Check to make sure a single item
was selected.
 If
(swSelMgr.GetSelectedObjectCount2(0))
= 1 Then
 ' Check to make sure a face
was selected.
 Dim selType As Long
 selType =
swSelMgr.GetSelectedObjectType3(1, 0)
 If (selType =
SwConst.swSelFACES) Then
 ' Set a reference to the
selected face.
 Dim swFace As Face2
 Set swFace =
swSelMgr.GetSelectedObject6(1, 0)

 ' Display the area of the
selected face.
 MsgBox "Surface area: " &
swFace.GetArea & " m^2"
 Exit Sub
 Else
 MsgBox "You must select a
single face."
 Exit Sub
 End If
 Else
 MsgBox "You must select a
single face."
 Exit Sub
 End If

End Sub

' Set a reference to the select set of
the active document.
 Dim oSelectSet As SelectSet
 Set oSelectSet =
ThisApplication.ActiveDocument.SelectSet

' Check to make sure a single item was
selected.
 If oSelectSet.Count = 1 Then
 ' Check to make sure a face was
selected.

If TypeOf oSelectSet.Item(1) Is
Face Then

 ' Set a reference to the
selected face.
 Dim oFace As Face
 Set oFace =
oSelectSet.Item(1)

' Display the area of the
selected face.

 MsgBox "Surface area: " &
oFace.Evaluator.Area & " cm^2"
 Exit Sub
 Else
 MsgBox "You must select a
single face."
 Exit Sub
 End If
 Else
 MsgBox "You must select a single
face."
 Exit Sub
 End If
End Sub

 23

 24

Assemblies -- New Terminology to Learn

Assemblies add a additional level of flexibility to modeling systems, and with it an
additional level of complexity. The following concepts need to be understood
when dealing with assemblies:- parts, part references, multiple instances of parts
in an assembly, subassemblies; mate constraints, transforms, and interference.
Taken in isolation these individual concepts are reasonably straight forward to
understand. Together they provide a very powerful mechanism for building large
scale models.

In Inventor, the API terminology for assemblies differs from that used in
SolidWorks, and once you become familiar with these differences and
understand the underlying concepts it becomes relatively easy to cross-correlate
the objects and find new features and object within Inventor to supplement your
toolbox to help you obtain even more power and control over assemblies. The

 25

Inventor API online help documents provide an excellent introduction, so a brief
overview is provided here.

Firstly the API object terminology. Table 6 details the key SolidWorks objects
along with the equivalent Inventor API objects:

Table 6: Assembly Objects

SolidWorks
Object

Inventor Object Comments

Component ComponentOccurence As with a SolidWorks component, a
ComponentOccurrence can also be
a part or an assembly. There is also
a ComponentOccurrences
collection object.

Mate Mate Constraint

MathTransform Matrix In general, use the
TransientGeometry object for
various matrix transform and math
utilities.

Proxy Objects

Inventor also uses a concept called ‘Proxies’, or ‘Proxy Objects’. These are a set
of objects that make it easy for you to work with parts, features, and geometric
entities while they are being used within an assembly.

For example, a part may be located and oriented differently while being used in
an assembly, and the coordinates of say, a vertex on that part will be different in
the original part document than in the assembly document. A transformation
matrix needs to be applied to go from one system to another.

 26

Proxy Objects take care of this transform in Inventor. Simply stated, the proxy will
obtain the data related to any sub parts or subassemblies in the context of the
main assembly.

The following table details some of the main tasks typically performed on
assemblies, along with the associated SolidWorks and Inventor APIs.

Table 7: Assembly APIs

Task SolidWorks APIs Inventor APIs

Add components into
an assembly

AssemblyDoc::AddComponent5 ComponentOccurrences::Add

Locate and orient the
components

• MathUtility::CreateTransform
• Component2::Transform2

• TransientGeometry::CreateMatrix
• ComponentOccurrence::Transfor

mation

Define Joints between
components

AssemblyDoc::AddMate3 AssemblyConstraints::AddMateConstr
aint

Check for interference AssemblyDoc::ToolsCheckInterfe
rence2

AssemblyComponentDefinition::Analyz
eInterference

Traverse assembly
components

• IConfiguration::GetRootCom
ponent3

• IComponent2::GetChildren

• AssemblyComponentDefintion::Co
mponentOccurrence

• ComponentOccurrence::SubOccur
rences

To use proxies, the CreateGeometryProxy method of the ComponentOccurrence
object is the main access point. You can request a proxy object for any entity that
exists under the tree of that ComponentOccurrence.

Working with Drawings

Assuming you have an existing model that you would like to create a new
drawing for, here is a look at functions that you would use in Inventor
corresponding to those in SolidWorks.

 27

Creating Drawing Sheets

The following methods are used to create a new drawing and add a blank sheet:

• Create a new drawing document: SldWorks::NewDocument -->
Documents::Add

• Add a new sheet: DrawingDoc::NewSheet3 --> Sheets::Add
• Additionally, you will need to add a border and title block in Inventor using

the following methods: Sheet::AddDefaultBorder, and
Sheet::AddTitleBlock.

Placing Model Views On A Sheet

To insert standard orthographic views, equivalent of
DrawingDoc::Create3rdAngleViews2 in SolidWorks, create a base view first and
then add 2 projected views using the following methods:

• DrawingViews::AddBaseView
• DrawingViews::AddProjectedView

Use methods on the TransientGeometry objects to define the locations of the
views.

Retrieving Dimensions From the Base Model

To insert dimensions from the underlying model in a drawing sheet in Inventor,
use the Retrieve method of the GeneralDimension object as shown in the
example below. This will produce results equivalent to the SolidWorks
DrawingDoc::InsertModelAnnotations3 method.

Public Sub RetrievDimensionsFromModel()

Dim oDrawing As DrawingDocument

Set oDrawing = ThisApplication.ActiveDocument

 28

Dim oView As DrawingView

Set oView = oDrawing.ActiveSheet.DrawingViews(1)

Dim oDimColl As GeneralDimensionsEnumerator

Set oDimColl =
oDrawing.ActiveSheet.DrawingDimensions.GeneralDimensions.Retrieve(oView
)

End Sub

If this does not achieve the desired result for any reason, create the dimensions
using appropriate "GeometryIntent" objects. The concept of Geometry Intent is
explained in the next section.

New Drawing Document Concept: Geometry Intent

In Inventor, methods to create drawing dimensions expect geometry points to be
supplied in the form of GeometryIntent objects.

To better understand such objects, imagine a leader line and arrow pointing to a
user-selected point on a drawing line. Leader line associativity to the selected
spot on the drawing line needs to be maintained, but there is no point geometry
midway on the drawing line to reference. In this case, a GeometryIntent object
encapsulates the intent to reference a location on the drawing line, a certain
distance from a particular end.

Similarly, dimensions require GeometryIntent objects because, unlike the
Autodesk Inventor modeling environment, the drawing environment contains only
2D lines, arcs and circles - no points. So, a GeometryIntent object for a
dimension might reference a particular end of a line or arc, or the center of a
circle or arc.

There is more information on using GeometryIntent objects, and drawing
automation, in the Inventor API documentation and also the following article:

 29

http://augiru.augi.com/content/library/au07/data/paper/DE111-4.pdf.

http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Faugiru.augi.com%2Fcontent%2Flibrary%2Fau07%2Fdata%2Fpaper%2FDE111-4.pdf

 30

Customizing the User Interface

Start With a Wizard

Customizing the Inventor user interface is typically done via an add-in
application. An add-in provides you with the widest access to user interface
elements and the tightest integration. This is true in both Inventor and
SolidWorks.

The easiest and best method to get started with add-in development in Inventor
is to use one of the various Visual Studio wizards provided, which are similar to
the wizards distributed with SolidWorks. Use the following step-by-step guide to
have your skeletal add-in application up and running in a few easy steps:
http://modthemachine.typepad.com/files/VBAtoAddIn.pdf. The steps attributed to
Visual Basic 2008 Express in this paper will apply equally well to the latest Visual
Basic 2010 Express edition as well.

When following the steps outlined in the above whitepaper, take a special note of
the following:

• ThisApplication No More: An Add-In doesn’t have the ThisApplication
property and needs to get access to the Inventor Application object
another way. The m_inventorApplication variable will provide this access.

• Compare the Add-In Class and Methods: Note the add-in object's class
and required methods that correspond to your add-in in SolidWorks:

o SwAddIn --> ApplicationAddInServer
o SwAddIn::ConnectToSW --> ApplicationAddInServer::Activate
o SwAddIn::DisconnectFromSW -->

ApplicationAddInServer::Deactivate

http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2FVBAtoAddIn.pdf
http://www.google.com/url?sa=D&q=http%3A%2F%2Fmodthemachine.typepad.com%2Ffiles%2FVBAtoAddIn.pdf

 31

Mapping the User Interface

The default user interface for Inventor 2011 is the "Ribbon" interface, which is
based on the Microsoft Windows Presentation Foundation (WPF) technology.
Inventor still supports the classic interface with menus and panel bars, which you
will find comparable to the SolidWorks 2010 interface. The following discussion
focuses on the Ribbon interface as this is the current default in Inventor, and
represents the immediate future.

The figure below shows the Inventor 2011 user interface elements along with the
corresponding SolidWorks element names (in parentheses). Refer to the
Overviews articles in the User Interface Customization section of the Inventor
API documentation for additional images and descriptions of the UI elements.

Figure 6: Comparing the User Interfaces

 32

Comparing Customizable UI Elements

This section summarizes how the UI elements that can be customized in
SolidWorks would be accessed and modified in Inventor.

Menus and Toolbars

Although the default Ribbon interface replaces the older menu and panel bars in
Inventor, the following options are available to replicate your SolidWorks menus
and toolbars in Inventor:

• Add them to a Ribbon tab;
• Use the classic Inventor interface and add to the menus and command

bars.

If the API for the “classic” Inventor interface is used, and the user switches to the
Ribbon interface the application program will continue to work and will
automatically have its controls added to the Ribbon interface, but to have better
placement of controls the Ribbon API should be used.

FeatureManager

As mentioned earlier, use the Browser Pane in Inventor to have an equivalent of
the SolidWorks FeatureManager design tree.

PropertyManager

There is no direct equivalent of the SolidWorks PropertyManager page in
Inventor. But there are a few other options:

• Construct a standard Visual Studio dialog to migrate the PropertyManager
page;

 33

• Create additional panes within the browser. Because the additional panes
are just ActiveX control containers, they can contain any type of
information and can even consist of other ActiveX controls;

• Create dockable windows that can host dialogs and controls.

Model Views

To add controls to the graphics screen, simply obtain View::HWND and use the
relevant Microsoft Windows APIs. The View::Camera object can also be used to
define or modify the model views.

Pop-up Menus

To achieve the equivalent of adding a command group to a shortcut menu in
SolidWorks, use the context menu interface provided by the Inventor API.

Status Bar

Similar to the Frame object on the SolidWorks application object, the
StatusBarText property of the Inventor application object can be used to set the
text in the status bar. To provide ‘real time’ instructions to the end user during a
specific interaction, use the StatusBarText property of the InteractionEvents
object.

Mapping the User Interface API Objects

The table below summarizes the approximate equivalents of the key objects that
you would use in SolidWorks to access the UI elements described above:

• Command Group: CommandManager::CreateCommandGroup -->
RibbonTabs::Add

• Command Item: CommandGroup::AddCommandItem -->
CommandControls::AddButton

 34

• Feature Manager: ModelViewManager::CreateFeatureMgrControl3 -->
BrowserPanes::Add

• Pop-up Menus: CommandManager::AddContextMenu -->
CommandBarControls::AddButton

• Status Bar Text: StatusBarPane::Text --> Inventor::StatusBarText

 35

Advanced Topics

The B-Rep API

The Boundary Representation method, abbreviated as B-Rep or BREP, forms
the geometrical foundation for both SolidWorks and Inventor and indeed for the
majority of modern CAD applications. It is a method to represent solid geometry
in terms of its constituent "boundary" elements such as faces, edges etc., and
their interrelationships.

B-Rep, and computer-aided geometric design (CAGD) in general is a vast topic,
so this discussion is limited to accomplishing common geometry tasks familiar to
SolidWorks users using the Inventor B-Rep API. For a more thorough discussion
of B-Rep, please refer to the Inventor 2011 Online API Reference and the Virtual
Inventor API Training Webcast B-Rep topic.

Comparing the B-Rep Models

When it comes to the B-Rep API's, one of the most important concepts to
understand is the classification of B-Rep elements into "topology" and
"geometry". Topology refers to the structure of a part whereas geometry refers to
the spacial definition of the entities that make up the part.

Here is the topology object model in SolidWorks:

• SolidWorks: Body2 --> Face2 --> Loop2 --> CoEdge --> Edge --> Vertex

The corresponding topology objects in Inventor could be outlined as follows, not
considering the collection objects:

• SurfaceBody --> FaceShell --> Face --> EdgeLoop --> Edge --> Vertex.

 36

The Inventor FaceShell object provides an additional level of representation
which could be useful for determining whether the body it belongs to is closed (as
opposed to open sheet metal, for example), and for calculating volumes etc.

Table 8 shows the correspondence between the topology and geometry objects
in SolidWorks and Inventor:

Table 8: Topology and Geometry Objects

SolidWorks Topology  Geometry Inventor Topology  Geometry

Face2  Surface Face  Surface (BSplineSurface,
Cone, Cylinder, etc., for example)

Edge  Curve Edge  Curve (Arc2D, Circle2D, etc.)

Vertex  Point Vertex  Point

Accessing Topology Objects

There are several ways to access the topological information of a model,
including from features, from user selections, by proximity calculations, from
attributes, and more. One method that is commonly used in both SolidWorks and
Inventor is to traverse the B-Rep hierarchy starting with the body object.

Here are some of the accessor functions to bodies from SolidWorks and Inventor
part and assembly documents:

• PartDoc::GetBodies2 --> PartComponentDefinition::SurfaceBodies
• Component2::GetBodies3 --> ComponentOccurrence::SurfaceBodies

To get to the faces in a body, the equivalent of SolidWorks' Body2::GetFirstFace
and Face2::GetNextFace sequence in Inventor is as follows, starting with how
the body object is accessed:

Dim oPartDef As PartComponentDefinition

Set oPartDef = ThisApplication.ActiveDocument.ComponentDefinition

Dim oSurfaceBody As SurfaceBody

 37

Dim oFace As Face

For Each oSurfaceBody In oPartDef.SurfaceBodies

For Each oFace In oSurfaceBody.Faces

...

The B-Rep tree can also be traversed using short-cut accessors without
traversing every child object, e.g.:-

• Face2::GetEdges --> Face::Edges
• Edge::GetStartVertex --> Edge::StartVertex

Evaluating Geometry

Once the required topology object(s) are obtained, the underlying geometry
element can be queried, which provides the associated geometric information
such as lengths, areas, curvatures, and so on.

Here are some of the accessor objects to the geometry for SolidWorks and
Inventor:

• Face2::GetSurface --> Face::Geometry
• Edge::GetCurve --> Edge::Geometry
• Vertex::GetPoint --> Vertex::Point

The geometry can then be evaluated for information that is required for any
subsequent calculations or analysis. As an example, a face can be examined to
determine whether or not a face it is planar by using the Inventor equivalent of
the SolidWorks Surface::IsPlane method. The 2D rectangular representation of it
in the parameter space can also then be obtained if necessary. The following
example evaluates a face, and then obtains the range box values using the
equivalent of the SolidWorks’ Surface::Parameterization, as follows:

 38

Dim oFace As Face

If oFace.SurfaceType = kPlaneSurface Then

Dim oEval As SurfaceEvaluator

Set oEval = oFace.Evaluator

Dim oRange As Box2d

Set oRange = oEval.ParamRangeRect

...

Refer to the Inventor API help documentation for a complete list of evaluator
objects and methods.

Persistent References

BRep objects tend to be transient in nature and change as the model features
are modified. Any time the model is recomputed, the BRep object references
become invalid. For example, a reference to a Face object becomes invalid if
features that drive or impact on that face are added or modified.

In SolidWorks safe entities could be used to address such changes. Similarly, in
Inventor, you can create a reference key to a topological entity before any
features edits and then use this reference key to obtain that entity again after
each feature has been added.

Reference keys provide a persistent reference to a particular BRep object
between model recomputes.

For further details, search for the Reference Keys example in the API product
documentation.

 39

Custom Attributes

This section discusses custom attributes in SolidWorks, and how they can be
translated into Inventor attributes. Attributes are used to store application-specific
information along with the CAD model, and can be added to almost any object.

The following table outlines the correspondence between SolidWorks and
Inventor attribute objects:

• Define Attributes
• SldWorks::AttributeDef --> [InventorEntity]::AttributeSet
• SldWorks::DefineAttribute --> AttributeSets::Add
• Populate Attributes
• SldWorks::Parameter --> AttributeSet::Attribute
• AttributeDef::AddParameter --> AttributeSet::Add
• Attach Attributes
• AttributeDef::CreateInstance5 --> Not needed in Inventor since the

attribute is already attached to an object during creation.
• Find Attributes
• Just as feature traversal is the preferred method to search for attributes in

SolidWorks and not B-Rep traversal, Inventor provides a special object for
efficient attribute searches, called Document::AttributeManager.

Events and Notifications

Events are either user actions or software actions that are of interested to an
application. The application may need to handle specific events, and respond to
them in some way. The Notification capability in both SolidWorks and Inventor
provide you with mechanisms to do that.

 40

Start with Add-In Template Code

It is straight forward to test events in Inventor VBA, but not recommended that
macros take advantage of them. Events are best managed from a full blown Add-
In. A wizard-generated Inventor add-in project or the AddInEvents labs solution
from the Inventor webcast archives are good starting points when trying to
understand this topic -- you will find this in Module 10. Familiarity with handling
notifications in SolidWorks is also essential.

Look for AddHandler Calls

Once you have the skeletal Inventor add-in application, look in the file
StandardAddInServer.vb for calls to "AddHandler" in the Activate() function. As
outlined in the section on Customizing the User Interface, the Activate() function
is similar to the ConnectToSW() function in SolidWorks. Compare the
AddHandler calls in SolidWorks as well, which can be reached by stepping
through ConnectToSW(). These are the notifications that this sample application
is going to handle.

Let's look at a specific AddHandler call in SolidWorks code that will notify us
when a file is opened:

AddHandler iSwApp.FileOpenPostNotify, _

AdddressOf Me.SldWorks_FileOpenPostNotify

Here's how the equivalent AddHandler call will appear in the Inventor-generated
code:

AddHandler m_ApplicationEvents.OnOpenDocument, AddressOf
Me.m_ApplicationEvents_OnOpenDocument

Add Your Code to the Notification Functions

Now look for the subroutine with the name highlighted above, and that is where
the definition of the OnOpenDocument handler is located. The SolidWorks code

 41

to handle file open will need to appear in this function, modified appropriately to
use Inventor objects. Also note that while the SolidWorks function in the above
example will notify you after a file is opened, Inventor handles both before and
after notifications in a single function and informs you which one is currently
triggered via the BeforeOrAfter argument for the function.

Here's an example of how the function could be used to display the name of the
document after it was opened:

Private Sub m_ApplicationEvents_OnOpenDocument(ByVal DocumentObject As
Inventor._Document, _ ByVal FullDocumentName As String, _ ByVal
BeforeOrAfter As Inventor.EventTimingEnum, _ ByVal Context As
Inventor.NameValueMap, _ ByRef HandlingCode As
Inventor.HandlingCodeEnum)

Select Case (BeforeOrAfter)

Case kAfter

System.Windows.Forms.MessageBox.Show("OnOpenDocument: " +
DocumentObject.DisplayName)

Case kBefore

Debug.Print " Before"

Case Else

Debug.Print " Aborted"

End Select

End Sub

The Autodesk Inventor API supports notification of many events ranging across
the entire API and notifications are available for commonly used objects.

This was just an outline describing how to migrate event handling code from
SolidWorks to Inventor. For additional learning material on handling notifications
in Inventor, please refer to the API Overviews in product documentation and the
Module 10 presentation mentioned above.

 42

Graphics

Computer graphics is a vast topic and a basic understanding of interactive
computer graphics concepts can help considerably when working with CAD
graphics. Some of the key concepts that are typically taught in introductory
computer graphics curricula include graphics pipeline, graphics hardware,
transformations and viewing, mouse and keyboard input, lighting and surface
shading, rendering optimization and so on. A detailed discussion of these topics
is outside the scope of this paper.

Use Native Primitives

In SolidWorks add-ins can use the API to draw directly into the model view
window using notifications available on the ModelView object, typically using
OpenGL. The Add-In responds to repaint and buffer swap events so that custom
graphics primitives can be added into the SolidWorks model window.

Inventor graphics are handled very differently. The Inventor API provides its own
graphic primitives -- points, lines, triangles, text; collectively called
"ClientGraphics" -- that are maintained and transformed by Inventor. Some of
these primitives are shown in Figure 7.

 43

Figure 7: ClientGraphics Primitives

Like all graphics programming, creating Client Graphics follows a two step
process, first creating graphics data, and secondly displaying this data using
primitives. This separation of data from graphics allows a single set of data to be
referenced by many graphics primitives.

Graphics for Real-time Interaction

A recently introduced object in Inventor called InteractionGraphics operates in a
manner similar to regular ClientGraphics, except that it is available only when the
user is interacting with the model. InteractionGraphics are much faster and so
are well suited to real-time feedback during a command.

Mouse and Keyboard Inputs

In the SolidWorks API, if you want to perform custom graphical actions or
calculations in response to mouse inputs – button clicks, move, drag, etc. –
mouse event handlers would typically be added and the relevant callbacks
implemented using the procedure outlined above. If, however, custom graphics
objects are created using OpenGL and the Add-In needs to capture selection,

 44

keyboard input and so on, then functions outside the SolidWorks API would be
required. The typical method in that case would be to override the graphics
window procedure with a call to a Windows SDK function, a technique known as
subclassing the WndProc.

In Inventor, if ClientGraphics are used to create custom graphical entities, there
is no need to use Windows SDK API’s for mouse or keyboard inputs. The
InteractionEvents object in the Inventor API provides access to mouse and
keyboard events, and behaves like an Autodesk Inventor command. When
started, the currently running command is terminated and it becomes the active
command. All input from the user is then directed to the InteractionEvents object.
Depending on which events you choose to subscribe to you can listen and
respond to the user's input. Figure 8 shows the output from the MouseEvents
example in the API training lab 10b which handles the OnMouseDown event to
let the user select a point on a sketch plane and create a circle at that point.

 45

Figure 8: MouseEvents Example

The other events supported by the MouseEvents object are also straightforward
and are very similar to the mouse events available for VB/ VBA forms. Using
these events you can receive notification that the mouse moved or a button was
clicked and the coordinates, both model and view, where this occurred. The
KeyboardEvents object is also obtained from the InteractionEvents object, and
Keyboard events can be listened to in conjunction with the mouse events. Table
9 shows the corresponding API event handlers for some common mouse
notifications.

Table 9: Mouse Event Handlers in SolidWorks and Inventor

Event SolidWorks Inventor

Left mouse button double
clicked

MouseLBtnDblClkNotify OnDoubleClick

Left-mouse button MouseLBtnDownNotify OnMouseDown

 46

Event SolidWorks Inventor

pressed down

Mouse pointer moved MouseMoveNotify OnMouseMove

Redo Undo Objects

One of the basic capabilities available to users in both SolidWorks and Inventor
is to be able to undo an action by using a simple menu command or the CTRL +
Z key combination, and likewise, to redo that action using the CTRL + Y keys.
You can typically undo and redo up to ten previous steps this way per the default
settings in either application, which can be changed by the user.

When a custom application creates a complex, high-level object in a single
command or offers a new feature, users may expect to be able to undo and redo
that operation in the same way as normal commands. The mechanism available
to application Add-In developers for this involves the ability to group several API
calls into a single unit that can then be undone or redone by the user using
familiar menus and keyboard shortcuts.

The typical programming constructs and steps involved in implementing undo
redo capability in SolidWorks and Inventor are as shown in Table 10:
Table 10: Redo Undo Objects

Description SolidWorks Inventor

1. Mark the start of the
custom unit

ModelDocExtension::Sta
rtRecordingUndoObject

TransactionManager::
StartTransaction

2. Mark the end of the
custom unit

ModelDocExtension::Fin
ishRecordingUndoObject

Transaction::End

3. Undoes the action(s) ModelDoc2::EditUndo2 TransactionManager::
UndoTransaction

4. Redoes the action(s) ModelDoc2::EditRedo2 TransactionManager::
RedoTransaction

 47

In Inventor, this functionality is referred to as “Transaction”. As described above,
transactions essentially encapsulate the ‘create’, ‘edit’ and ‘delete’ operations
within Inventor to behave as a single unit.

There is a lot more to transactions including when to use them and when not to;
handling notifications of transactions; nested transactions and so on. Additionally,
an advanced capability called Change Processor will let you automatically
implement undo/redo behavior without requiring the use of transactions. This and
more complete information about Transactions and Change Processor is
available in the API Overviews section of the Inventor API help documentation.

 48

Summary
This guide has been developed to help SolidWorks Add In developers assess the
effort required to migrate their applications to work with Autodesk Inventor. The
guide is also designed to provide a starting point for any migration activity.

If you are embarking on a project to port your SolidWorks application over to
Autodesk Inventor, and require more information please feel free to contact:-

Gary Wassell
Developer Technical Services
Autodesk Global Subscription & Support

Autodesk Ltd.
1 Meadow Gate Avenue,
Farnborough Business Park,
Hants, GU14 6FG

www.autodesk.com/adn
Autodesk, Autodesk Inventor, and Inventor are registered trademarks or trademarks of Autodesk,
Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand
names, product names, or trademarks belong to their respective holders. Autodesk reserves the
right to alter product offerings and specifications at any time without notice, and is not responsible
for typographical or graphical errors that may appear in this document. © 2010 Autodesk, Inc. All
rights reserved.

http://www.autodesk.com/adn

	Contents
	Introduction
	Who is this guide aimed at?
	How this guide helps you.
	COM APIs
	Application Integration Types
	How Do You Decide?

	Finding Your Way Around the Inventor API
	You Cannot Record Command Sequences But Master the Macros Anyway!
	Use a Different Ruler

	Simple VBA Macros
	Displaying Active Document Name in SolidWorks
	This is How It Will Look in Inventor
	The Application and Document Are Right At Hand

	Exploring SolidWorks and Inventor Object Models
	Charting the Objects
	Finding the Objects That You Need
	Getting the Right Bucket
	What Do You Need to Find?
	It's Arranged A Little Differently
	Collection Objects
	Definition Objects

	Getting Things Done
	Accessing the Application Object
	Creating and Accessing Documents
	Traversing Features
	Accessing User Selections
	Assemblies -- New Terminology to Learn
	Proxy Objects
	Working with Drawings
	Creating Drawing Sheets
	Placing Model Views On A Sheet
	Retrieving Dimensions From the Base Model
	New Drawing Document Concept: Geometry Intent

	Customizing the User Interface
	Start With a Wizard
	Mapping the User Interface
	Comparing Customizable UI Elements
	Menus and Toolbars
	FeatureManager
	PropertyManager
	Model Views
	Pop-up Menus
	Status Bar

	Mapping the User Interface API Objects

	Advanced Topics
	The B-Rep API
	Comparing the B-Rep Models
	Accessing Topology Objects
	Evaluating Geometry
	Persistent References

	Custom Attributes
	Events and Notifications
	Start with Add-In Template Code
	Look for AddHandler Calls
	Add Your Code to the Notification Functions

	Graphics
	Use Native Primitives
	Graphics for Real-time Interaction
	Mouse and Keyboard Inputs

	Redo Undo Objects

	Summary

